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Using a colocated multiple input/multiple output (MIMO) radar
system, we consider the problem of joint design of amplitudes and
frequency-hopping codes for frequency-hopping waveforms. The
joint design method yields better combined code and amplitude
matrices that result in improved performance over that of separate
designs. We propose a game theory framework for the joint design.
First, we present the MIMO radar signal model and the sparse
representation. Then the problem formulation is constructed based
on sparse recovery and the ambiguity function of the MIMO radar
system for frequency-hopping waveforms. For amplitude design, we
propose two strategies: amplitude design with separate constraints
and amplitude design by fusing all transmitters. We formulate a
novel game model and propose two joint design algorithms, one
applying a noncooperative scheme and the other applying a
cooperative scheme. Owing to the extremely large size of the feasible
set of the discrete code, we propose to use these algorithms to obtain
the є-approximate equilibrium. We demonstrate the improvement of
the resulting codes and amplitudes through numerical examples.
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I. INTRODUCTION

Multiple input/multiple output (MIMO) radar [1–6] is
an active technology that is attracting the attention of
researchers due to the improvement in performance it
offers over conventional single antenna systems. In the
traditional standard phased-array radar, the system
transmits only scaled versions of a single waveform. The
MIMO radar system allows transmitting multiple probing
signals that may be chosen quite freely, obtaining more
degrees of freedom than systems with a single transmit
antenna [7]. MIMO radar systems are commonly used in
two different antenna configurations: distributed [2] and
colocated [3]. Both distributed and colocated MIMO
radars exploit waveform diversity, and it has been shown
that both radars have many advantages. In this paper,
whenever we mention MIMO radar, we are referring to
colocated MIMO radar.

The frequency-hopping waveforms, proposed in [8],
were originally designed for multiuser communications,
radar, and sonar systems. Because frequency-hopping
signals can be easily generated and have constant modulus,
they have been considered effective radar waveforms. In
[4–6], the authors used the frequency-hopping codes to
exploit waveform diversity for colocated MIMO radar
and considered adaptive waveform design. The
MIMO ambiguity function is used to optimize the
frequency-hopping codes in [5], with the assumption that
the target Dopplers are small. The extension of the small
Doppler condition to the general case was conducted in
[4], which applied the hit-matrix formalism to design the
code matrix. Both frequency-hopping code and amplitude
designs are considered in [6] by using sparse modeling,
but they were designed separately. Our goal in this paper
(see also [9]) is to jointly design the codes and amplitudes.

Multiobjective optimization problems can be found in
various fields, wherever optimal decisions need to be
made in the presence of trade-offs between two or more
conflicting objectives. Various methods have been studied
to solve such problems [10]. Methods that transform
multiple objective functions into a single one include the
weighted sum method, lexicographic method, and
physical programming. Other approaches, such as genetic
algorithms [11, 12], can be used to solve multiobjective
problems directly but perform badly when the function
evaluation is expensive. In recent years, game theory has
been used to solve multiobjective design problems,
especially for some practical problems in engineering
[13]. Rao [14] proposed a game based on Nash
equilibrium to conduct optimization problems and
described the relationship between Pareto-optimal
solutions and game theory. Applications of game-based
methods to solve multiobjective optimization problems in
some engineering examples can be found in [15, 16].

Frequency-hopping waveform design has been widely
studied recently for both frequency codes and amplitudes.
Gogineni and Nehorai [6] formulated two objective
functions based on the sparse model. The objective
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function for amplitude matrix B is related to the code
matrix, denoted as C. However, the objective function for
C, developed based on block coherence, is independent of
B, which makes it difficult for us to apply game theory to
solve this joint problem. The frequency-hopping
waveforms used in [5] based on the ambiguity function
made the assumption that the amplitudes for all
transmitters and frequencies are the same. We generalize
this by considering various amplitudes, and the resulting
objective function is naturally involved with the
amplitudes. The optimal code design based on ambiguity
function obtains good resolution, and the amplitude design
based on sparse recovery improves the detection
performance. It is natural for us to combine these two
objective functions, exploiting the advantages of both
designs. We propose to employ game theory to solve this
joint optimization problem by viewing the two objective
functions as two interacting players. We will show that the
joint design improves the performance of both matrices at
the same time. Note that, in [6], the authors used the
strategy of amplitude design with separate (ADS)
constraints, which assigned the same energy constraint to
each transmitter. However, in practice, it makes more
sense to use a sum of the transmitted energy constraint
across all transmitters. That is, different transmitters may
have different energies, depending on their respective
channel qualities. Therefore, we propose another strategy,
amplitude design by fusing (ADF) all transmitters. We
will show the comparative results of these two strategies
through numerical examples.

The formulated game combines players whose strategy
spaces consist of both discrete set and continuous set. The
size of the feasible space for code matrix is highly
dependent on the numbers of transmitter MT and
frequency-hopping choice K. Because the code feasible
space will become extremely large as MT or K increases, it
is almost impossible for us to find the Nash equilibrium
due to the expensive computational cost. However, the
simulated annealing [17] algorithm helps us to find an
approximate optimal solution for the single code objective
function, leading to an ε-approximate equilibrium (ε-AE)
[18] for the joint problem.

Building on our previous conference paper [9], we
have added quite a few new points: for the amplitude
objective function, we have constructed a more effective
strategy by fusing all transmitters’ information (ADF); for
the game model, we have elaborated the detailed definition
of the ε-AE; for the optimization, we have provided
insightful analysis of the convergence performance of the
proposed algorithms; and last but not least, we have
investigated far more numerical examples to illustrate the
effectiveness of our algorithms.

The rest of this paper is organized as follows. In
Section II, we present the signal model for the colocated
MIMO radar, including the measurement model and the
sparse model. The game model formulation, together with
two joint design algorithms based on game theory, one
applying a noncooperative scheme and the other applying

a cooperative scheme, is stated in Section III. In Section
IV, we use numerical results to show the advantage of our
joint design over the separate design. Our conclusions and
directions for possible future work are contained in
Section V.

II. SIGNAL MODEL

In this section, we will describe the signal model for
our radar system. We first develop the measurement model
for MIMO radar estimation problem. Then we transform
the measurement model to a sparse representation.

A. Measurement Model

We assume that there are MT transmitters and MR

receivers in the colocated MIMO radar system, arranged
in uniform linear arrays. The spacing between the
transmitters is dT, and the spacing between receivers is dR.
Additionally, we assume that the targets are at far-field
with respect to the radar, i.e., the direction of propagation
is approximately equal at each sensor. Also, we assume
the relative distance between any two targets is much
smaller than their individual distances with respect to the
radar. Hence, all the targets can be associated with the
same direction-of-arrival [5, 6, 19]. Let these arrays form
the same angle θ with the targets. Let L pulses comprise a
waveform, and we can write the frequency-hopping
waveform from the mth transmitter as

um(t) =
L−1∑
l=0

φm(t − Tl), (1)

where

φm(t) =
Q−1∑
q=0

bm,qe
j2πcm,q�f t1(0,�t)(t − q�t),

and

1(0,�t)(t)
�=

{
1, if 0 < t < �t,

0, otherwise.

Tl and �t denote the pulse repetition interval and hopping
interval duration, respectively, and q and Q represent the
hopping index and the length of the code, respectively.
The duration of the pulse is Tφ = Q�t, and the bandwidth
of the pulses is approximately K�f. We assume �f�t = 1.
The frequencies cm,q of the transmitted signal during each
hopping interval and the amplitudes bm,q of the transmitted
sinusoid are the waveform design parameters. The optimal
design of the frequency hopping waveform amounts to
choosing cm,q and bm,q for all the transmitters and all the
hopping intervals. We assume each cm,q ∈ {1, . . ., K},
where K is a positive integer. Further, to maintain the
orthogonality of the waveforms, cm,q satisfies,

cm,q �= cm′,q , for m �= m′, ∀q. (2)

For amplitudes, we constrain bmin ≤ |bm,q | ≤ bmax for all
transmitters and frequencies. This constraint provides
control over the power of the transmitted radar signals.
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Further, we normalize the transmitted energy for each
waveform by assuming

∑Q−1
q=0 |bm,q |2 = 1. For

convenience, we arrange cm,q into an MT × Q dimensional
code matrix C = {cm,q}MT ×Q, which describes all the
transmitted frequencies. Similarly, we arrange bm,q into an
MT × Q dimensional amplitude matrix
B = [bT

1 ; . . . ; bT
MT

], where bm = [bm,1, . . . , bm,Q]T .

Consider a target at (τ , ν, f) where τ is the delay of the
target, ν is the Doppler frequency, and f is the spatial
frequency:

f = dR sin(θ)

λ
, (3)

where λ is the wavelength of the carrier. We assume that
each of the targets contains multiple individual isotropic
scatterers. The bandwidth of the transmitted waveform
determines the resolution of the system. We require very
high bandwidth to resolve each of the individual scatterers
of the target. Due to practical bandwidth constraints,
however, the system cannot resolve these individual
scatters. Therefore, this collection of scatterers can be
expressed as one point scatterer that represents the radar
cross section (RCS) center of gravity of these multiple
scatters [20]. Therefore, each target has a
frequency-dependent RCS. The point target assumption
has been widely used earlier in the literature for both
colocated MIMO radar [3–6] and distributed MIMO radar
[2, 21]. Note that our proposed approach based on game
theory is also applicable to the extended target case as
long as we can formulate corresponding objective
functions based on different criteria.

The target response at the kth receive antenna is a
summation of all reflected signals from all emitters,
expressed as

yk(t) =
MT∑
m=1

am,q ūm(t − τ )ej2πνt ej2πf (γm+k) + ek(t), (4)

where

ūm(t) =
L−1∑
l=0

Q−1∑
q=0

bm,qe
j2πcm,q�f (t−Tl )1(0,�t)(t − q�t − Tl).

(5)

Here, γ
�= dT /dR, am,q represents the target’s RCS and

ek(t) is the additive noise received at the kth receiver,
assumed to follow Gaussian distribution. Equation (4)
gives the measurement model for one target.

Now, we consider the situation of multiple targets. We
assume that there are R targets in the illuminated region.
Based on the assumption that all the targets are far located
from the antennas, the angle θ is assumed to be the same.
Therefore, the spatial frequency is independent of targets.
Therefore, the received signal, which is a summation of the
reflected signals from all the targets, can be expressed as

yk(t) =
MT∑
m=1

R∑
r=1

ar
m,q ūm(t − τ r )ej2πνr t ej2πf (γm+k) + ek(t).

(6)

Note that the delay and Doppler are all target dependent in
the multiple targets case. Besides, the RCS will also be
target dependent, expressed as ar

m,q . After sampling the
received signal, we obtain

yk(n) =
MT∑
m=1

R∑
r=1

L−1∑
l=0

Q−1∑
q=0

ar
m,qbm,qe

j2πcm,q�f (nTS−Tl−τ r )

× 1(0,�t)(nTS − q�t − Tl − τ r )ej2πνrnTS

× ej2πf (γm+k) + ek(n),

∀n = 1, . . . , N, where N is the total number of samples at
each receiver during one processing interval and TS

denotes the corresponding sampling interval.

B. Sparse Model

Sparsity-based approaches have been broadly used for
signal processing in the radar field [19, 22–25]. Suppose
we discretize the delay and Doppler space into D and W
uniformly separated grid points. Generally, the values of D
and W can be very large. For convenience, we restrict their
values to be smaller numbers by restricting our interested
region to a narrow one. Therefore, we have a total of DW
number of grid points, among which only R correspond to
the real targets. Let τ d and νw represent the delay and
Doppler of the grid point. For each grid point, we define
the basis function as

ψ̃m,k,q(n, d, w)

=
L−1∑
l=0

ej2πcm,q�f (nTS−Tl−τ d )

× 10,�t (nTS − q�t − Tl − τ d )ej2πνwnTS ej2πf (γm+k).

Stacking the basis function according to samples, we
obtain an N × 1 vector

ψ̃m,k,q(d, w) = [ψ̃m,k,q(1, d, w), . . . , ψ̃m,k,q(N, d, w)]T .

Then we stack ψm,k,q(d, w) with respect to receivers into
an NMR × 1 vector

ψ̃m,q(d, w) = [ψ̃m,1,q(d, w)T , . . . , ψ̃m,MR,q(d, w)T ]T .

Now, each ψ̃m,q(d, w) is the basis vector for a different
transmitter and frequency. For all transmitters and
frequencies, we further stack ψ̃m,q(d, w) into an
NMR × MT Q matrix

�(d, w) = [ψ̃1,1(d, w), . . . , ψ̃1,Q(d, w), . . . , ψ̃MT ,Q(d, w)].

Considering all the combination of
(di, wj ), i = 1, . . . , D, j = 1, . . . , W, we can finally
stack �(d, w) into an NMR × DWMTQ matrix

� = [�(d1, w1), . . . , �(d1, wW ), . . . , �(dD, wW )]. (7)

Equation (7) is the dictionary matrix, defining the basis
elements of the sparse representation. Considering all the
different transmitters and frequency intervals, we stack
ar

m,qbm,q into an MTQ vector

xr = [ar
1,1b1,1, . . . , a

r
1,Qb1,Q, . . . , ar

MT ,QbMT ,Q]T .
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Now, we define the sparse vector as

x(d, w) =
{

xr , if (τ d, νw) = (τ r , νr ),

0, otherwise.

Further, we stack the vectors x(d, w) corresponding to
different delay and Doppler grid points to obtain a
DWMTQ dimensional block-sparse vector

x = [x(1, 1)T , . . . , x(d, w)T , . . . , x(D, W )T ]T .

In this vector, there are only R nonzero blocks,
corresponding to different targets. Additionally, we stack
the measurements and noise samples at all receivers to
obtain the measurement model

y = �x + e, (8)

where y = [ yT
1 , yT

2 , . . . , yT
MR

]T , an NMR × 1 vector;
yk = [ yk(1), yk(2), . . . , yk(N)]T , an N × 1 vector;
e = [eT

1 , eT
2 , . . . , eT

MR
]T , an NMR × 1 vector; and

ek = [ek(1), ek(2), . . . , ek(N)]T , an N × 1 vector. Owing
to the orthogonality of the waveforms, block-matching
pursuit (BMP) [26] is suitable for our problem. We will
use the BMP method to recover the unknown target
parameters from the measurements.

III. JOINTLY OPTIMAL DESIGN USING
GAME THEORY

Researchers have studied and optimally designed the
amplitudes and frequency-hopping codes separately,
achieving improved performance. In this section, we will
present the objective functions for joint design of the
frequency-hopping waveforms. The function with
amplitudes is based on sparse recovery, whereas the
function with frequency-hopping codes is based on the
ambiguity function. Then we combine the two objective
functions, jointly designing the waveforms using game
theory.

A. Objective Function for Frequency-Hopping Codes

The ambiguity function characterizes the resolution of
radar waveforms and has been used as an effective tool to
design radar systems. Similarly, we apply the MIMO radar
ambiguity function to design the frequency-hopping
waveforms.

For frequency-hopping code design [5], to obtain a
sharp ambiguity function, we need to design the pulses
{φm(t)} so that the following objective function

�(τ, f̄ , f̄ ′) �=
MT −1∑
m=0

MT −1∑
m′=0

r
φ

m,m′(τ )ej2π (f̄ m−f̄ ′m′)γ (9)

is sharp around the line {(τ, f̄ , f̄ ′)|τ = 0, f̄ = f̄ ′}, where
f̄ and f̄ ′ represent the normalized target’s true spatial
frequency and the assumed spatial frequency at the
receiver, respectively. In (9), the cross-correlation function

is defined as

rφ

m,m′ (τ )

=
Q−1∑
q=0

Q−1∑
q ′=0

bm,qbm′,q ′χ rect(τ − (q ′ − q)�t, (cm,q − cm′,q ′ )�f )

× ej2π�f ((cm,q−cm′ ,q′ ))q�tej2π�f cm′ ,q′ τ ,

with χ rect(τ, ν) being the single input/multiple output
ambiguity function of the rectangular pulse s(t), given by

χ rect(τ, ν)
�=

∫ �t

0
s(t)s(t + τ )ej2πτ dt.

However, to achieve good system resolution, we need to
eliminate the other peaks in �(τ, f̄ , f̄ ′) not on the line
{(τ, f̄ , f̄ ′)|τ = 0, f̄ = f̄ ′}. We solve this by adding
penalties on these peaks, forcing the energy to be evenly
spread over the delay and spatial frequency spaces. One
way to achieve this goal is to minimize the p-norm of
�(τ, f̄ , f̄ ′). The resulting optimization problem is

minC

∫ ∞

−∞

∫ 1

0

∫ 1

0
|�(τ, f̄ , f̄ ′)|pdf̄ df̄ ′dτ,

subject to cm,q ∈ {0, 1, . . . , K − 1},
cm,q �= cm′,q , for m �= m′,

When we consider the sparse recovery model, the delay
range is [0, τD]. Therefore, the optimization problem can
be reduced to

minC fp(B, C) =
∫ τD

0

∫ 1

0

∫ 1

0
|�(τ, f̄ , f̄ ′)|pdf̄ df̄ ′dτ.

(10)

B. Objective Function for Amplitudes

BMP is a sparse recovery method for signals that
exhibit block sparse structure, and we will use the BMP
method to estimate the target RCS, adaptively designing
the amplitudes of frequency-hopping waveforms [6].

Recall that the nonzero element of the sparse vector x
is the product of ar

m,q and bm,q, and the design parameters
are bm,q . During the initialization step, we set bm,q = 1.

Therefore, the nonzero entries of the sparse vector x
depend only on the attenuation ar

m,q . Hence, we obtain
âr

m,q as the estimates of the target attenuations after sparse
support recovery. We use âr

m,q to replace ar
m,q in the

following design problem. In practice, provided enough
measurements and high signal-to-noise-ratio (SNR), we
expect to achieve the estimation of âr

m,q with high
accuracy. We define x̂r

m to be the summation of the
energies of the estimates for target r and transmitter m

x̂r
m =

Q−1∑
q=0

b2
m,q |âr

m,q |2.

Then we have the vector x̃m(bm) = [x̂1
m(bm), . . . , x̂R

m(bm)].
With the goal of estimating all the R targets, we want to
maximize the smallest recovered estimate. We propose to
use the following two optimization strategies.
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1) We maximize the smallest recovered estimate in
x̃m(bm) for each transmitter. Therefore, we have MT

optimization problems corresponding to MT transmitters.
They are independent of each other, with separate
constraints. We denote this strategy as ADS constraints.
The optimization problem for transmitter m is

maxbm
minr∈1,...,R{x̃r

m(bm)},
subject to |bm,q | ≥ bmin, |bm,q | ≤ bmax,

Q−1∑
q=0

|bm,q |2 = 1.

(11)

The objective of (11) is equivalent to

minbm
f̃m(bm, C) = maxr∈1,...,R{Z − x̃r

m(bm)}, (12)

where Z is a large constant, guaranteeing that Z − x̃r
m(bm)

is nonnegative.
2) We maximize the smallest recovered estimate,

obtained by fusing all the MT transmitters. Considering
that different transmitters may have different energies, we
use a sum of the transmitted energy constraint across all
MT transmitters. We denote this strategy as ADF all
transmitters. The optimization problem is

maxB minr∈1,...,R

{
MT∑
m=1

x̃r
m(bm)

}
,

subject to |bm,q | ≥ bmin, |bm,q | ≤ bmax,

MT∑
m=1

Q−1∑
q=0

|bm,q |2 = 3.

(13)

Note that the energy constraint is 3, making the
summation of energy the same as with ADS. Similar to
ADS, we get the equivalent form:

minB f̃ (B, C) = maxr∈1,...,R

{
Z −

MT∑
m=1

x̃r
m(bm)

}
. (14)

C. Game Model

A normal strategic game is a model of interacting
decision makers, consisting of players, their strategies, and
the players’ cost functions [27]. Each player chooses one
strategy from his corresponding set of possible strategies.
The goal of the players is to choose strategies that
minimize their own cost functions.

If we consider ADS, then in our joint design problem
we have MT + 1 objective functions. As for the MT

objective functions for amplitude design, their variable
choices are independent of each other. It means that the
choice of any bi is irrelevant to the choice of bj for i �= j.
Accordingly, we write these MT cost functions into one
summation function:

fs(B, C) =
MT∑
m=1

f̃m(bm, C). (15)

Therefore, the optimization problem (12) is equivalent to

minB fs(B, C). (16)

Now, we have two objective functions, fs(B, C)
corresponding to amplitude design and fp(B, C)
corresponding to code design. We assume that each player
is associated with one objective function. Therefore, we
have two players. The cost function for the first player is
chosen as

f1(B, C) = fp(B, C). (17)

The cost function for the second player is

f2(B, C) = fs(B, C). (18)

(B, C) are the design variables. The first player wants to
choose parameters C that minimize his or her cost
function f1(B, C), and similarly the second player wants to
find variables B to minimize his or her own cost function
f2(B, C). The strategy spaces for the two players are
respectively

B = {B||bm,q | ≥ bmin, |bm,q | ≤ bmax,

Q−1∑
q=0

|bm,q |2 = 1, m = 1, . . . , MT },

and

C = {C|cm,q ∈ {1, 2, . . . , K}MT Q, cm,q �= cm′,q , for m �= m′}.
If we consider ADF, then in our joint design problem

we have two objective functions. The differences in the
case of ADS are the second player’s cost function and its
strategy space:

f1(B, C) = f̃ (B, C), (19)

with

B = {B||bm,q | ≥ bmin, |bm,q | ≤ bmax,

MT∑
m=1

Q−1∑
q=0

|bm,q |2 = 3}.

(B, C) denotes a profile of actions by the two players.
A Nash equilibrium is a profile of strategies such that the
strategy for each player is an optimal response to the
strategy of the other players. Supposing (B*, C*) is a Nash
equilibrium for this game, then it should satisfy

f1(B∗, C∗) ≤ f1(B, C∗), ∀B ∈ B,

and

f2(B∗, C∗) ≤ f2(B∗, C), ∀C ∈ C.

The feasible space C for player 2 is discrete. Owing to
the numerous choices of C, up to KMT Q, it is almost
impossible for us to find the global minimal point for the
cost function f1, making it difficult to find the Nash
equilibrium. For this optimization problem, we prefer to
use the simulated annealing algorithm, which is quite
suitable [17]. One problem is that the feasible space for
the code matrix is extremely large. Nevertheless simulated
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annealing achieves an acceptable solution, yielding a good
approximation to the global optimum, the ε-AE [18].

DEFINITION 1 Let G = (N, A, f : A → R
N ) be an

N-player game with action sets A = A1 × . . . × AN and
cost functions f = [ f 1, . . . , f N ]T . Suppose ε is a
nonnegative parameter, a strategy vector
(a∗

1 , . . . , a
∗
N ) ∈ A is an ε-AE for G if

fi(a
∗
1 , . . . , a

∗
N ) ≤ fi(a

∗
1 , . . . , a

∗
i−1, ai, a

∗
i+1, . . . , a

∗
N ) + ε,

∀ai ∈ Ai , i ∈ N.

Our definition here is the ε-AE in a pure strategy game,
which is a different definition from that used in most of
the literature for a mixed strategy game. In our problem,
we will focus on finding the ε-AE for the proposed game.

D. Optimization Algorithm Using Game Theory

1) Noncooperative Case: First, we consider the
noncooperative case, with each player having no
knowledge of the other players’ information. They know
only their own information. The algorithm is expressed as
follows:

Initialize C0 randomly from feasible space C, and initialize bm0, m =
1, . . . , MT for ADS or initialize B for ADF, whose elements are set to
be equal.
At step k, fix Ck, then conduct the single objective optimization design
for player 2:

minB f2(B, Ck),

resulting in the optimized Bk+1. Using the newly generated Bk+1, we
optimize player 1’s objective function

minC f1(Bk+1, C),

obtaining Ck+1.
Replace Bk, Ck with Bk+1, Ck+1 and repeat the above step until an
ε-AE is satisfied or k is large enough.

We apply the convex programming software CVX [28, 29]
to solve the single amplitude optimization problem. The
simulated annealing algorithm solves the code
optimization problem, which has a large discrete
feasible set.

The convergence of the proposed optimization
algorithm is an important issue. However, the cost
functions (10), (12), and (14) in our problem are rather
complex. Besides, the size of the discrete feasible space
for code matrix will be extremely large as MT or K
increases. Both of these two reasons make it difficult for
us to analytically prove the convergence, which, however,
is shown through numerical examples in Section IV.
Nevertheless, we would like to add the following remarks
regarding the convergence issue.

REMARKS First, we define four notations, two at a time:

f k
1C = f1(Bk−1, Ck) (20)

f k
2C = f2(Bk−1, Ck). (21)

These are the first and second cost functions at step k after
designing only C, using the former amplitude strategy
Bk−1 of step k – 1 and the newly obtained code strategy
Ck . Now we define

f k
1B = f1(Bk, Ck) (22)

f k
2B = f2(Bk, Ck). (23)

These are the first and second cost functions at step k after
designing both C and B, using the newly obtained Bk and
Ck . Considering the first player f1, due to the conflict
between these two players, we expect that f k

1C would
decrease compared to f k−1

1B and that f k
1B would increase

compared to f k
1C . Note that the increase and decrease are

not strict. Namely, there is some variation, and this is
explainable from a game theory point of view. Therefore,
if convergence exists, these two cost functions f k

1C and f k
1B

should cross with each other somewhere after a number of
iterations. We define this crossing point as the convergence
point with f k

1C = f k−1
1B , which means the code matrix does

not change at step k. Using the same code matrix, the
minimization process for the second player would not
change, resulting in the same amplitude matrix. This is
exactly what convergence means. Thus, in the algorithm,
one stop criterion is chosen as f k

1C = f k−1
1B . It is the same

case with the second player. We will show the
convergence performance through numerical examples.

Second, our algorithms converge to different points
with respect to different trials. Namely, the convergence
points are not fixed. This is reasonable because the code
space is extremely large; thus, we cannot find a global
optimal solution for the first player, namely f1. We reduce
the original big problem into a smaller problem, achieving
lower complexity at the price of solution optimality.
However, we want to emphasize that the obtained
convergence points perform sufficiently well, especially
when we conduct target estimation. We will verify this
through numerical examples in Section IV.

Third, all the obtained convergence points satisfy the
AE conditions in Definition 1.

PROOF Following the discussion in the first item, we
denote the convergence point as f1(B∗, C∗) and
f2(B∗, C∗). On the other hand, suppose that the global
optimal point of player 1 with fixed B∗ is C∗∗. If we let

ε = f1(B∗, C∗) − f1(B∗, C∗∗), (24)

we can obtain

f1(B∗, C∗) ≤ f1(B∗, C) + ε. (25)

For player 2, f2(B∗, C∗) is the global minimal point
for f2(B, C∗) with fixed C∗. Thus we have

f2(B∗, C∗) ≤ f2(B, C∗) ≤ f2(B, C∗) + ε. (26)
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Equations (6) and (7) are exactly the conditions for
(B∗, C∗) to be an ε-AE in Definition 1.

2) Cooperative Case: In the cooperative1 case, we
suppose each player knows part of the other players’
information by incorporating their cost functions in his or
her own cost function. The resulting cost function for each
player is

f ∗
i = wi,ifi +

∑
j �=i

wi,j fj , (27)

where
∑

j wi,j = 1, wi,j = wj,i . In our problem, we
choose the second player’s cost function to remain the
same, without considering the first player’s influence. All
that changes is the first player’s objective function.
Additionally, we replace the absolute cost function with a
relative cost function. Details are shown as follows:

Initialize C0 randomly from feasible space C, and initialize bm0, m =
1, . . . , MT for ADS or initialize B for ADF, whose elements are set to
be equal.
At step k, fix Ck, then conduct the single objective optimization design
for player 2:

minB f2(B, Ck),

resulting in the optimized Bk + 1. Using the newly generated Bk + 1, we
optimize player 1’s new objective function

minC f ∗
1 =

MT∑
m=1

wm

f̃m(bm,k+1, C)

f̃m(bm,k, Ck)

+wMT +1
f1(Bk+1, C)

f1(Bk, Ck)
,

obtaining Ck + 1.
Replace Bk, Ck with Bk+1, Ck+1 and repeat the above step until an
ε-AE is satisfied or k is large enough.

The convergence analysis for the cooperative case is
similar to that of the noncooperative case.

IV. NUMERICAL SIMULATIONS

In this section, we use numerical examples to
demonstrate the performance improvement obtained by
joint design using game theory. We consider a uniform
linear transmitting array with transmitter and receiver
numbers MT = 3 and MR = 3, respectively. Choose
θ = 30◦ and let the array spacing dT = dR = λ

2 . The length
of the frequency-hopping code Q equals 5. The number of
frequencies K equals 7. Suppose L = 10 pulses comprise a
waveform. The chip duration is �t = 1 µs, whereas the
time interval between pulses is 3 ms. The minimum
hopping frequency interval is �f = 1 MHz. Because we
chose K = 7, the maximum hopping-frequency is K�f =
7 MHz. Therefore, we sample at a Nyquist rate of
14 × 106 samples/s. Further, we suppose three targets are
present in the scenario. We specify the amplitudes of K

1 The cooperative case here has a different definition from cooperative
game. We consider the coalition between different players.

attenuations for each target

a1 = [0.4, 0.2, 0.5, 0.8, 0.1, 0.4, 0.3],

a2 = [0.6, 0.2, 0.8, 0.9, 0.1, 0.3, 0.5],

a3 = [0.2, 0.4, 0.3, 0.7, 0.4, 0.1, 0.9].

We can use this attenuation information to estimate the
RCS corresponding to different hopping-frequencies and
transmitters.

When considering sparse recovery, we discretize the
target delay-Doppler space. The grid size in delay is
�t = 1 µs, and the Doppler dimension is 10 Hz. The
delay space is uniformly divided in the interval
[0, 10] µs, and the Doppler grid points lie uniformly in the
interval [0, 100] Hz. Therefore, we have a total of V =
11 × 11 = 121 grid points, out of which only three
correspond to the true targets. We assume the true delays
and Doppler shifts of the targets are

[
τ 1, τ 2, τ 3

] = [4, 9, 1] µs, and[
ν1, ν2, ν3

] = [80, 60, 40] Hz.

Note that we assume we know the approximate target
locations, namely within the delay interval [0,10] µs and
Doppler interval [0, 100] Hz. When we consider a real
problem with a large surveillance region, this approximate
knowledge of the target information can be obtained by
conducting target detection beforehand or by using a
coarse grid first [30]. We define the SNR as

SNR = 10 log

( ‖x‖2

E(‖e‖2)

)
dB,

where E{·} denotes the expected value of {·}.
In the following numerical examples, we investigate

the performance of noncooperative joint design with ADS
(NC-ADS) and cooperative joint design with ADS
(C-ADS) in sub-Sections IVA–IVC. Then, in sub-Section
IVD, we compare the performance of joint design
employing ADS with those employing ADF (NC-ADF
and C-ADF). The convergence issue is investigated in
sub-Section IVE.

A. Frequency-Hopping Code Design

We compare the performance of the proposed design
method and the existing separate design methods using the
empirical cumulative distribution function (CDF) of
|�(τ, f, f ′)| applied in [5]. We use the Monte Carlo
method by sampling from the function |�(τ, f, f ′)|, and
plot the percentage of samples of |�(τ, f, f ′)| less than
different magnitudes. Thus, the larger the CDF for a
specific magnitude, the fewer undesired peaks the
waveform yields, and the better the waveform performs.
We have normalized the greatest value to 0 dB.
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Fig. 1. Empirical CDF of |�(τ, f, f ′)| for five different design
methods.

Fig. 1 shows the results of five different design
methods: without optimal design, optimize only C,
NC-ADS, C-ADS, and optimize only B. Because the CDF
criterion is mainly designed to measure the performance
improvement resulting from designing code matrix C, it is
not surprising to see that the method designing only C
achieves the best performance. When designing B only,
the performance becomes worse than even the case
without any optimal design. This is explainable from a
game theory point of view. Each player tries to choose
strategies that minimize his or her own cost function,
which will not necessarily contribute to the other players’
benefits. In this example, it degrades the other players’
performance. Game theory-based joint design performs
much better than that designing only B. Owing to the
degraded performance caused by designing B, the joint
design performs a little worse than that designing only C.
Note that the C-ADS performs better than the NC-ADS
and comes closest to the case of designing C only.

To show the relative superiority of our design methods,
we also compare the cross-correlation function of the
waveforms generated by the proposed methods with the
one designed based on block coherence [6]. We wish to
obtain small sidelobes.

From Fig. 2, it is quite evident that the joint design
methods, both NC-ADS and C-ADS result in a much
better cross-correlation function. The low sidelobes of the
cross-correlation function corresponding to the joint
design methods are much smaller than those of the
counterparts of the waveform designed using block
coherence. The reason for the superiority of the joint
design methods is because these designs consider
eliminating irrelevant peaks of |�(τ, f, f ′)|, which is
highly related to the correlation function.

B. Amplitude Design

We use the performance metric:

� = min x̂S

max x̂S̄

,

Fig. 2. Cross-correlation function r
φ

m,m′ (τ ), with m = m′ = 1, of
waveforms generated by proposed methods and one using the block

coherence measure. Abscissa axis is delay (τ /�t), and vertical axis is
cross-correlation value.

Fig. 3. Performance metric � comparison of five different design
methods.

where S and S̄ denote the recovered support sets of the
correct and incorrect target indices, respectively. The
numerator and denominator of � denote the weakest
target reconstruction and the strongest reconstruction of
the incorrect target indices, respectively. Therefore, � > 1
guarantees that the correct target indices dominate the
others, providing a measure of the recovery accuracy. We
want this metric to be as large as possible.

Fig. 3 shows the resulting performance metrics over
various SNR using different design methods. Because the
performance metric is mainly applied to measure the
performance improvement resulting by designing
amplitude matrix B, similar to what we mentioned earlier,
it is not surprising to see that the method designing only B
achieves relatively good performance. When designing C
only, at some specific SNR, the performance becomes
even worse than the case without optimal design. This is
also explainable from a game theory point of view. Game
theory-based joint design performs much better than one
designing only C. Owing to the degraded performance
caused by designing C, the NC-ADS performs a little
worse than designing only B. However, the C-ADS
achieves the best performance, better even than the result
from designing B only. This superiority is achieved by
cooperating between the players, sharing each other’s
information about cost functions.
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Fig. 4. Target estimates at SNR of –21.58 dB by designing only C.

Fig. 5. Target estimates at SNR of –21.58 dB by designing only B.

C. Sparse Support Recovery

As we assumed, three targets are present in the
illuminated space. We used 30 iterations for the BMP
algorithm. We have assumed the targets will lie exactly on
the grid points. However, in reality they may lie in
between two grid points, which can be a result of the grid
size not being small enough. When such modeling errors
occur, the authors in [21] have demonstrated that the
reconstruction algorithm BMP will map the estimates to
the grid point that is closest to the true target parameter.
The same holds for the results in this paper because we are
using BMP. The reconstructed target parameters at an
SNR of –21.58 dB are shown in Figs. 4–6, corresponding
to three different designs. Red squares are the true
locations of the three targets. For these two-dimensional
plots, the intensity of the grid point corresponds to the
specific reconstruction energy.

Fig. 4 shows the performance achieved by designing C
only, for which none of the three targets are correctly
recovered. Besides, some delay and Doppler are wrongly
estimated. For the case designing only B, shown in Fig. 5,
only one target (4 µs, 80 Hz) is estimated correctively.
However, at the same SNR, our C-ADS joint design based
on game theory successfully estimates all three targets,
with the three highest intensity points as shown in Fig. 6.

Fig. 6. Target estimates at SNR of –21.58 dB using C-ADS joint design.

Fig. 7. Empirical CDF of |�(τ, f, f ′)| for four joint design methods.

D. Performance Comparison of ADS and ADF

In the above subsections, we see that the joint design
employing ADS shows great advantage over separate
designs. In this subsection, we will concentrate on the
performance of joint design using ADF and compare its
effectiveness with ADS.

First, we consider the performance metric for
frequency-hopping codes, as in sub-Section IVA. Fig. 7
shows the results of four joint designs. As for
noncooperative designs, ADF outperforms ADS. Namely,
the strategy of fusing and constraining all transmitters
achieves better performance. We can explain this by
considering that, for ADF, different transmitters choose
their most suitable energy values based on their respective
channel qualities. However, for ADS, all the transmitters
are assigned equal energy. As for cooperative design, the
fusion strategy loses its superiority: C-ADS performs
better than C-ADF. We explain this from the view point of
game theory: one player’s strategy degrades the other
player’s performance much more strongly by using ADF
than by using ADS.

Next, we consider the performance metric for
amplitudes, as in sub-Section IVB. Fig. 8 shows the
comparison results, which are exactly the same as those of
frequency-hopping codes. In the end, we use sparse
support recovery to investigate the estimation performance
of the four joint design methods. Just as in sub-Section
IVC, three targets are present. The reconstructed target
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Fig. 8. Performance metric � comparison of four joint design methods.

TABLE I
Target Estimates at an SNR of –18.96 dB

Design Method (τ 1, ν1) (τ 2, ν2) (τ 3, ν3)

NC-ADS (4 µs, 70 Hz) (9 µs, 60 Hz) (1 µs, 40 Hz)
NC-ADF (4 µs, 80 Hz) (9 µs, 60 Hz) (1 µs, 40 Hz)

TABLE II
Target Estimates at an SNR of –20.63 dB

Design Method (τ 1, ν1) (τ 2, ν2) (τ 3, ν3)

C-ADS (4 µs, 80 Hz) (9 µs, 60 Hz) (1 µs, 40 Hz)
C-ADF (4 µs, 90 Hz) (9 µs, 60 Hz) (1 µs, 40 Hz)

parameters at an SNR of –18.96 dB for NC-ADS and
NC-ADF are shown in Table I. We can see that NC-ADF
correctly estimates all the three targets, whereas NC-ADS
falsely estimates the first target. Table II shows the
reconstructed target parameters at an SNR of –20.63 dB
for C-ADS and C-ADF. The results show that C-ADS
performs better than C-ADF. These results are in
accordance with the aforementioned numerical examples.

E. Convergence

In this subsection, we provide examples to numerically
show the convergence of our algorithms. We have made
more than 50 trials, and all converge to an ε-AE point
within k = 20 iterations. Note that we consider NC-ADS
here, but other algorithms are similar. Figs. 9 and 10 show
the convergence performance of both players for nine of
these 50 trials. We can see that both players converge after
several iterations and reach the ε-AE.

V. CONCLUDING REMARKS

We proposed a joint optimization algorithm using
game theory to compute the adaptive code matrix and
amplitude matrix for frequency-hopping waveform, which
involves both continuous and discrete feasible spaces. For
this purpose, we considered a colocated MIMO radar and
developed the received signal model and the sparse
recovery model. Based on two objective functions derived
by using the ambiguity function and sparse recovery, we
formulated a game model with two players. For amplitude

Fig. 9. Convergence performance of player 1 for nine trials using
proposed NC-ADS algorithm. Horizontal axis is iteration number k, and
vertical axis is cost function of first player f1. Blue starred line denotes

f1B, and red circled line denotes f1C.

Fig. 10. Convergence performance of player 2 for nine trials using the
proposed NC-ADS algorithm. Horizontal axis is iteration number k, and
vertical axis is cost function of second player f2. Blue starred line denotes

f2C, and red circled line denotes f2B.

design, we constructed two effective strategies: ADS
constraints and ADF all transmitters. Owing to the large
size of the discrete feasible space, we proposed to find an
ε-AE. Both the cooperative case and noncooperative case
were considered to optimize the frequency-hopping codes
and amplitudes. We numerically demonstrated the
advantage of jointly optimal design methods over separate
design methods. We concluded that the optimization
algorithm simultaneously chooses frequency-hopping
codes that obtain a sharp ambiguity function and
amplitudes that increase the possibility of a relatively
good target return at the same time. Additionally, we
compared the performance of ADS and ADF, showing that
ADF outperforms ADS for the noncooperative case. As
for the cooperative case, however, ADF is not as good as
ADS. In the end, we numerically showed that our
algorithms do converge.

In future work, we will develop an efficient algorithm
to solve the global equilibrium for large discrete feasible
sets, for which we found only an ε-AE in this paper. In
addition, we will analytically study the convergence of the
proposed algorithms. We will also work on other more
effective algorithms by incorporating more performance
criteria in the constraints to deal with cases where a bad
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approximate equilibrium exists. For sparse recovery, we
will consider nonuniform grid spacing to improve the
estimation accuracy and reduce the computational
complexity. Future work will also include applications
related to real data.
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